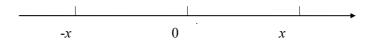
2. MÓDULO DE UM NÚMERO REAL

Dado $x \in R$, definimos o módulo (ou valor absoluto) de x, e indicamos por |x|, como segue:

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}.$$

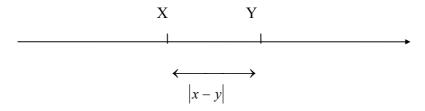
Interpretação Geométrica

O valor absoluto de um número x é, na reta, a distância entre o ponto x e a origem.



Isto é, |x| corresponde a distância do ponto x ao ponto 0.

Se os números reais x e y estão associados aos pontos X e Y na reta real, ou seja, são as coordenadas de X e Y, então |x-y| corresponde à distância do ponto X ao ponto Y.



Esta interpretação como distância será de grande utilidade para que se possa enxergar intuitivamente o significado de algumas questões envolvendo módulo.

Observações

- 1) Temos da definição que $|x| \ge 0$, $\forall x \in R$.
- 2) |x| = |-x|
- 3) Decorre também da definição que |x| é o maior dos números x e -x, o que é indicado como $|x| = \max \{-x, x\}$. Portanto, $x \le |x|$ e $-x \le |x|$, o que equivale a $-|x| \le x \le |x|$, $\forall x \in R$.
- 4) É importante lembrar que o símbolo \sqrt{a} , $a \ge 0$, é definido como sendo o único número x não negativo tal que $x^2 = a$. Da definição de raiz quadrada, temos $\sqrt{x^2} = |x|$. De fato,

$$\begin{split} &\sqrt{x^2} = y \,,\, y \ge 0 \Rightarrow y^2 = x^2 \Rightarrow \, (y-x)(y+x) = 0 \Rightarrow \\ &\Rightarrow \quad \begin{cases} y = x, \, \text{neste caso}, \,\, x \ge 0 \\ y = -x, \, \text{neste caso}, \,\, -x \ge 0, \,\, \text{ou seja}, \,\, x \le 0 \end{cases} \quad \Rightarrow \quad \sqrt{x^2} = y = \left| x \right| \end{split}$$

Notemos a diferença deste fato com o cálculo das raízes da equação $x^2=a$ que são $x=\sqrt{a}$ e $x=-\sqrt{a}$.

Por exemplo,
$$\sqrt{9} = \sqrt{3^2} = |3|$$
 e $\sqrt{9} = \sqrt{(-3)^2} = |-3|$. Por outro lado, $x^2 = 9 \Rightarrow \sqrt{x^2} = \sqrt{9} \Rightarrow |x| = 3 \Rightarrow x = \pm 3$.

Exemplo

Vamos resolver as seguintes equações:

1)
$$|2x+1|=5$$

Temos que

$$2x + 1 = 5$$
 ou $2x + 1 = -5$

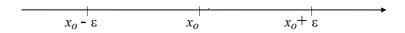
e, portanto, x = 2 ou x = -3 e o conjunto solução da equação é $S = \{-3, 2\}$.

2)
$$|9x + 2| = -3$$

Não existe x pertencente a R tal que |9x+2| < 0, logo o conjunto-solução da equação é o vazio, $S = \emptyset$.

3)
$$|x-x_0| = \varepsilon$$
, com $\varepsilon > 0$

Temos que $x-x_0=\varepsilon$ ou $x-x_0=-\varepsilon$, o que equivale a $x=x_0+\varepsilon$ ou $x=x_0-\varepsilon$. Usando a interpretação geométrica, $|x-x_0|=\varepsilon$ significa que o número x (ou o ponto a ele associado no eixo real) está a uma distância ε de x_0 .

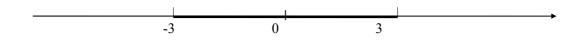


Consideremos agora algumas inequações e suas resoluções.

Exemplos

1) |x| < 3

Da interpretação geométrica de |x| temos que a distância de x à origem deve ser menor que 3.

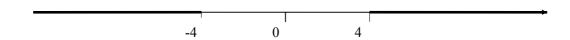


Assim, -3 < x < 3.

Chegamos à mesma conclusão usando o fato que $|x| = \max \{-x, x\} < 3$. Logo, -x < 3 e x < 3, o que equivale a -3 < x < 3.

2)
$$|x| > 4$$

Ainda usando a interpretação geométrica temos que a distância de *x* à origem deve ser maior que 4.



Assim, x < -4 ou x > 4.

Usando o fato que $|x| = \max \{-x, x \} > 4$, temos -x > 4 ou x > 4, ou seja, x < -4 ou x > 4.

A interpretação que demos para os exemplos anteriores é geral, conforme mostram as proposições seguintes.

Proposição 2.1. Dados $a \in R$, a > 0 e $x \in R$;

$$|x| < a \iff -a < x < a$$

D]

1) Mostraremos que $|x| < a \implies -a < x < a$.

Usando que $|x| = \max \{-x, x\}$, temos que

$$-x \le |x| < a \Rightarrow x > -a$$
 (I)

$$x \le |x| < a \implies x < a \pmod{1}$$

De (I) e (II) concluímos -a < x < a

- 2) Mostraremos que $-a < x < a \implies |x| < a$.
- i) Se $x \ge 0$ então |x| = x. Por hipótese x < a, logo |x| < a.

ii) Se x < 0 então |x| = -x. Por hipótese -a < x, ou seja, -x < a. Assim, |x| < a.

Observação

Na hipótese da Proposição 2.1. temos a > 0. Se $a \le 0$ temos uma inequação sem solução $|x| < a \le 0$.

Proposição 2.2. Dados $a \in R$, a > 0 e $x \in R$;

$$|x| > a \iff x < -a \text{ ou } x > a$$

\mathbf{D}

- 1) Mostraremos que $|x| > a \implies x < -a \text{ ou } x > a$.
- i) Se $x \ge 0$ então |x| = x e como |x| > a, temos x > a.
- ii) Se x < 0 então, -x = |x| > a, isto é, -x > a, ou seja, x < -a.
- 2) Mostraremos que x < -a ou $x > a \implies |x| > a$.

Usando que $|x| = \max \{-x, x\}$, temos que

$$a < x \le |x| \Longrightarrow |x| > a$$
 ou

$$a < -x \le |x| \Longrightarrow |x| > a$$

Observação

Na hipótese da Proposição 2.2. temos a > 0. Se a < 0, todo $x \in R$ é solução da inequação |x| > a e se a = 0, todo $x \in R$ é solução da inequação |x| > 0

Exemplos

Vamos resolver as seguintes inequações:

1)
$$|2x-5| < 3$$

 $|2x-5| < 3 \iff -3 < 2x-5 < 3 \iff 2 < 2x < 8 \iff 1 < x < 4$.

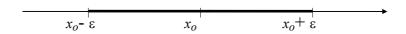
2)
$$|6-2x| \ge 7$$

 $|6-2x| \ge 7 \iff 6-2x \ge 7 \text{ ou } 6-2x \le -7 \iff -2x \ge 1 \text{ ou } -2x \le -13 \iff x \le -\frac{1}{2} \text{ ou } x \ge \frac{13}{2}.$

3)
$$|x - x_0| < \varepsilon, \ \varepsilon > 0$$

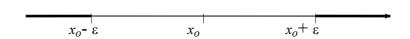
$$|x - x_0| < \varepsilon \iff -\varepsilon < x - x_0 < \varepsilon \iff x_0 - \varepsilon < x < x_0 + \varepsilon$$

A interpretação geométrica nos diz que que a distância de x a x_0 é menor que ε , logo x deve estar entre $x_0 - \varepsilon$ e $x_0 + \varepsilon$, ou seja, $x \in]x_0 - \varepsilon, x_0 + \varepsilon[$.



4)
$$|x - x_0| > \varepsilon$$
, $\varepsilon > 0$
 $|x - x_0| > \varepsilon \iff x - x_0 < -\varepsilon \text{ ou } x - x_0 > \varepsilon \iff x < x_0 - \varepsilon \text{ ou } x > x_0 + \varepsilon$

A interpretação geométrica nos diz que que a distância de x a x_0 é maior que ε , $\log x$ deve estar antes de $x_0 - \varepsilon$ ou depois de $x_0 + \varepsilon$, ou seja, $x \in]-\infty, x_0 - \varepsilon[\cup]x_0 + \varepsilon, +\infty[$



Proposição 2.3. Dados $x, y \in R$, temos que |x, y| = |x| |y|.

 \mathbf{D}

Temos três casos a considerar.

- i) Se $x \ge 0$ e $y \ge 0$, temos $x, y \ge 0$, portanto, |x, y| = x, y = |x|, |y|.
- ii) Se x < 0 e y < 0, temos $x \cdot y > 0$, e portanto, $|x \cdot y| = x \cdot y = (-x) \cdot (-y) = |x| \cdot |y|$.
- iii) Se $x \ge 0$ e y < 0, temos $x.y \le 0$, e portanto, |x.y| = -(x.y) = x.(-y) = |x|.|y|.

Observação

Se já são conhecidas as propriedades das raízes podemos demonstrar, mais diretamente, como a seguir:

$$|x.y| = \sqrt{(x.y)^2} = \sqrt{x^2.y^2} = \sqrt{x^2}.\sqrt{y^2} = |x|.|y|$$

Proposição 2.4. Dados $x, y \in R$, $y \neq 0$, temos que $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$.

 \mathbf{D}

Usando o fato que $\frac{1}{|y|} = \left| \frac{1}{y} \right|$, (que pode ser facilmente demonstrado separando-se em dois casos: y > 0 e y < 0) e a Proposição 2.3. temos:

$$\left|\frac{x}{y}\right| = \left|x \cdot \frac{1}{y}\right| = \left|x\right| \frac{1}{y} = \left|x\right| \frac{1}{|y|} = \frac{|x|}{|y|}.$$

Proposição 2.5. (Desigualdade Triangular). Dados $x, y \in R$, temos que $|x + y| \le |x| + |y|$.

D]

Temos três casos a considerar.

i) Se $x \ge 0$ e $y \ge 0$ temos $x + y \ge 0$ e, portanto,

$$|x + y| = x + y = |x| + |y|$$

ii) Se x < 0 e y < 0 então x + y < 0, portanto,

$$|x + y| = -(x + y) = -x - y = |x| + |y|$$

iii) Se $x \ge 0$ e y < 0, temos

$$y < -y = |y|, -x \le x = |x|$$
 e $x + y \ge 0$ ou $x + y < 0$.

Daí,

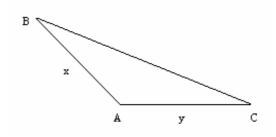
se
$$x + y \ge 0$$
, então $|x + y| = x + y < x + (-y) = |x| + |y|$

e

se
$$x + y < 0$$
, então $|x + y| = -(x + y) = -x + (-y) \le |x| + |y|$

Observação

A desigualdade triangular tem esse nome devido à sua interpretação geométrica no plano: Dado o triângulo ABC e considerando $\overline{AB} = x$, $\overline{AC} = y$, temos que $\overline{BC} < x + y$. A igualdade ocorre quando os pontos A, B e C são colineares.



EXERCÍCIOS

1) Resolva:

a)
$$|x| + |x - 5| = 8 - x$$

b)
$$|5x + 4| \ge 4$$

c)
$$|x-2|-|x-4| \le 1-x$$

d)
$$|x+1|+|x-2|>4$$

$$e) \frac{\left|x+1\right|}{\left|2x-1\right|} \le 2$$

2) Prove que para todo $x, y \in R$, valem as seguintes relações:

a)
$$\frac{1}{|y|} = \left| \frac{1}{y} \right|$$
, $y \neq 0$

b)
$$|x - y| \le |x| + |y|$$

c)
$$|x| - |y| \le |x - y|$$