13. RESPOSTAS DE EXERCÍCIOS

Capítulo 1

1.1 a)
$$(-\infty, -1) \cup (1/3, 3)$$
; b) $(-3, -2) \cup [-3/2, +\infty)$

1.2 a) F; b) F; c) V; d) V

Capítulo 2

2.1 a) $\{-3,+3\}$; b) $(-\infty,-\frac{8}{5}] \cup [0,+\infty)$; c) $(-\infty,\frac{7}{3}]$; d) $(-\infty,-\frac{3}{2}) \cup (\frac{5}{2},+\infty)$; e) $(-\infty,-1) \cup [-1,\frac{1}{5}] \cup [1,+\infty)$

Capítulo 3

3.1 a) $R - \{-1, 1\}$; b) [-1, 3]; c) $(-\infty, -2] \cup (1, 2]$; d) $\{-3, 3\}$ 3.2 a) R^* ; b) $n \in N^*$; c) 7 minutos;

- d) O tempo se aproxima de 3 minutos mas não atinge esse tempo. O rato não conseguirá percorrer o labirinto em menos de 3 minutos.
- 3.3 a) $R \{-1\}$; b) 19.400 pessoas; c) 66 pessoas aproximadamente;
- d) se aproximará de 20.000 pessoas, embora não alcance esse número.
- 3.4 $m_T = k (T T_a)$; T é a temperatura do objeto, T_a é a temperatura ambiente.
- 3.5 $M_p = k (n d)d$; onde M_p é a média de propagação da epidemia, n é o nº pessoas, e d é o nº de pessoas doentes.

Capítulo 4

- 4.1 a) $S_G = 80t + 5$ e $S_P = 60t + 20$; b) Os carros se encontram no km 65.
- c) Os carros não se encontram;. 4.2. $F = \frac{9}{5}C + 32$; 4.3. C(x) = 1.5x + 100
- 4.4 Primeira agência, se rodar menos que 25km, segunda agência se rodar mais que 25km.
- 4.5 O herói não alcançará a fronteira pois eles se encontram no km 70 da estrada.

4.6 340 m; 4.7 a) V = 157 + 3t; b) 289 veículos; 4.8 b) t = 1,08 anos

Capítulo 5

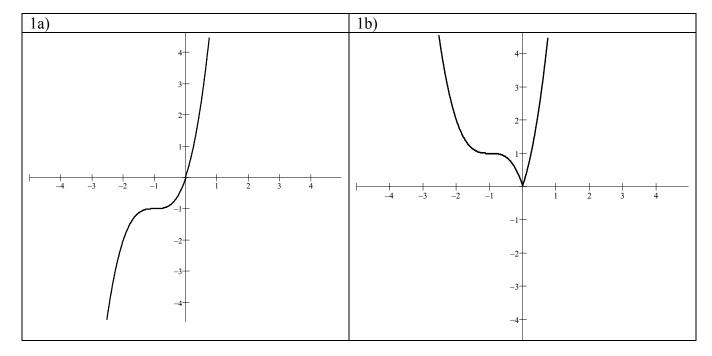
- 5.2 Não é crescente em R. De fato, 3 < 4 e f(3) = 4 > f(4) = 0
- 5.3 f é crescente em $(-\infty,-1]$ e $[0,+\infty)$; f é decrescente em [-1,0).
- 5.4 Não. $f(x) = \frac{1}{x}$ é decrescente em $(-\infty, 0)$ e em $(0, +\infty)$

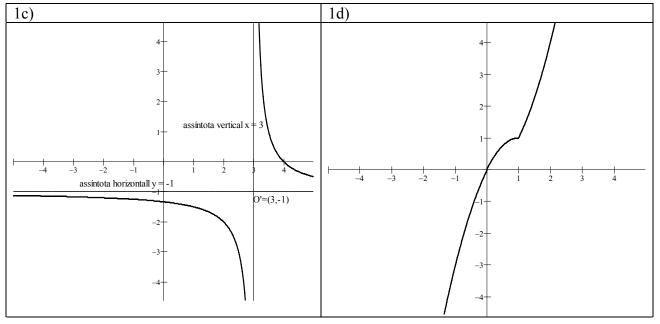
Capítulo 6

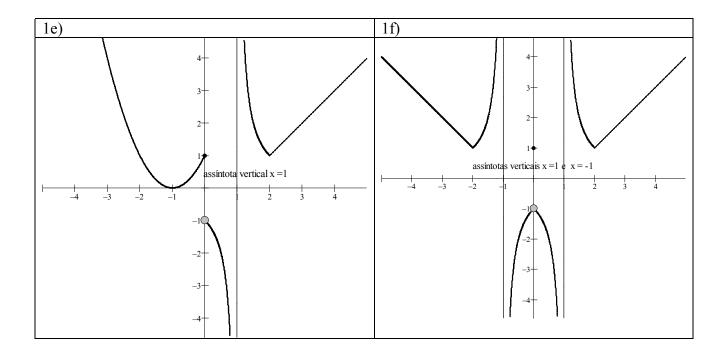
- 6.2 a) [-3,1/2]; b) $\{-1\}$; c) \emptyset ;
- 6.3 a) $[-3,1/2] \cup (1,+\infty)$; b) (-3,1/2); 6.4 D = 50km;
- 6.5 $y = -x^2 + 4x$;
- 6.6 a) h = 60m; b) t = 3 seg; c) $h_{m\acute{a}x} = 80m$; d) $0 \le t \le 8$
- 6.7 x = y = p/4; 6.8 x = y = 3
- 6.9 1 < t < 6 6.10 R\$1,75.

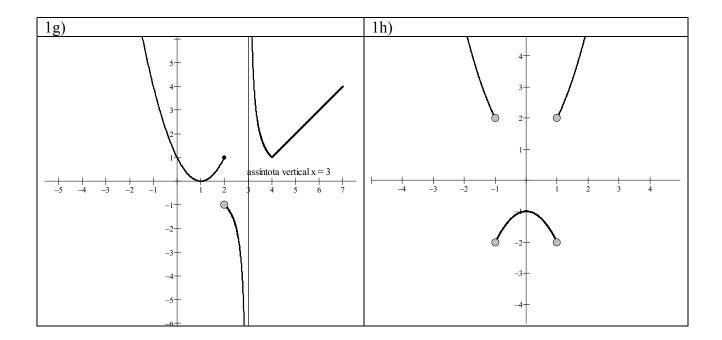
Capítulo 9

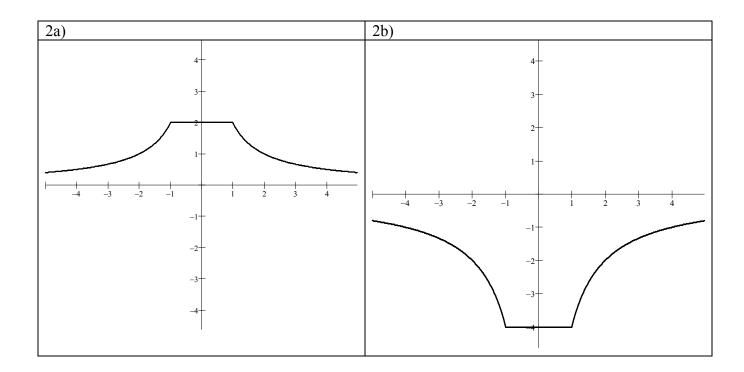
- 9.1 a) D(f) = R; Im(f) = R; f é estritamente crescente em R;
- b) D(f) = R; $Im(f) = R_+$; $f \in decrescente em <math>(-\infty,0]$ e crescente em $[0,+\infty)$;
- c) D(f) = R {3}; Im(f) = R {-1}; f é decrescente em $(-\infty, 3)$ e em $(3, +\infty)$;
- d) D(f) = R; Im(f) = R; $f \in extritamente crescente em R;$
- e) $D(g) = R \{1\};$ $Im(g) = (-\infty, -1) \cup [0, +\infty);$ g é decrescente em
- $(-\infty,-1] \cup [0,1)$ e em (1,2]; g é crescente em $[-1,0] \cup [2,+\infty)$;
- f) $D(g|x|) = R \{-1,1\}$; $Im(g|x|) = (-\infty,-1) \cup [1,+\infty)$; é decrescente em
- $(-\infty,-2] \cup [0,1)$ e em (1,2]; é crescente em [-2,1) e em $(-1,0] \cup [2,+\infty)$;

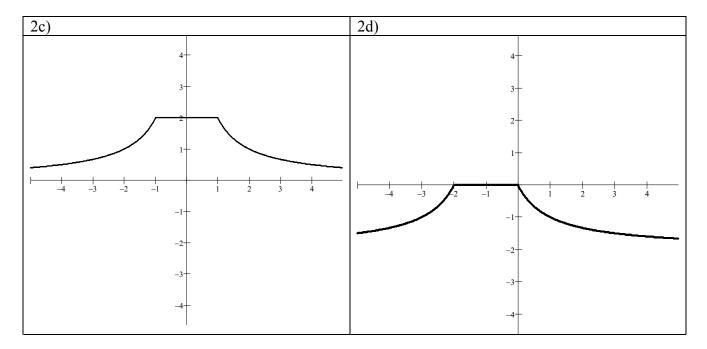

g) $D(g(x-2)) = R-\{3\}$; Im(g(x-2)) = Im(g); é decrescente em


 $(-\infty,1] \ \cup \ (2,3) \ e \ em (3,4]; \ \acute{e} \ crescente \ em [1,2] \ \cup \ [4,+\infty);$


h) $D(f) = R - \{-1, 1\}$; $Im(f) = (-2, 1] \cup (2, +\infty)$; f é decrescente em


 $(-\infty,\!-1) \cup [0,1)\,; \ f$ é crescente em $(\text{-}1,0] \ \cup \ (1,\!+\infty\,)$


Gráficos



Capítulo 10

10.1 a)
$$(f-g)(x) = \begin{cases} 0 & \text{se } x \neq 0 \\ -1 & \text{se } x = 0 \end{cases}$$
, $(f.g)(x) = x^2 \text{ e } (f/g)(x) = \begin{cases} 1 & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$ e todas possuem domínio igual a R.

10.3 I a) Dia 05; I b) Dias 17 e 18; II a)
$$N(x) = \begin{cases} 30 + x & \text{se } 1 \le x \le 15 \\ 45 & \text{se } 15 < x \le 31 \end{cases}$$

II b)
$$L(x) = \begin{cases} 4 - (0,1)x & \text{se } 1 \le x \le 15 \\ [(-0,1)x^2 + x + 120]/45 & \text{se } 15 < x \le 31 \end{cases}$$
; II c) Quociente

Capítulos 11, 12

9)
$$d(t) = \sqrt{4t^2 + 10.000}$$
;

10)
$$d(x) = \sqrt{x^2 + (6,1)^2 + (100)^2} = \sqrt{x^2 + 10.037,21}$$