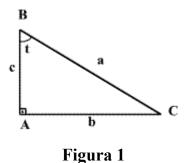
10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos.



Relembremos que, sendo $0 < t < \pi/2$, temos

$$tg t = \frac{b}{c}$$
 (= cateto oposto ÷ cateto adjacente)

$$\cos t = \frac{c}{a}$$
 (= cateto adjacente ÷ hipotenusa)

sen t =
$$\frac{b}{a}$$
 (= cateto oposto ÷ hipotenusa)

Considerando o inverso de cada uma destas razões definimos a cotangente, secante e cossecante de ângulos t, $0 < t < \pi/2$, como segue

$$\cot g t = \frac{c}{b} = \frac{1}{tg t}$$

$$\sec t = \frac{a}{c} = \frac{1}{\cos t}$$

$$\operatorname{cossec} t = \frac{a}{b} = \frac{1}{\operatorname{sen} t}$$

Usando o círculo trigonométrico S^1 , vamos estender as funções cotangente, secante e cossecante para ângulos e arcos quaisquer, lembrando a função de Euler E(t) definida anteriormente.

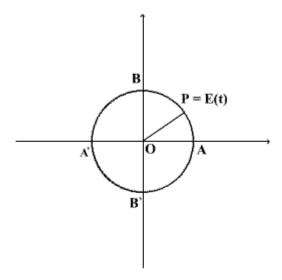


Figura 2

COTANGENTE

Dado $t \in R$, $t \neq k\pi$, $k \in Z$, sejam P = E(t) e C a interseção das retas OP e a tangente a S^1 no ponto B(0,1).

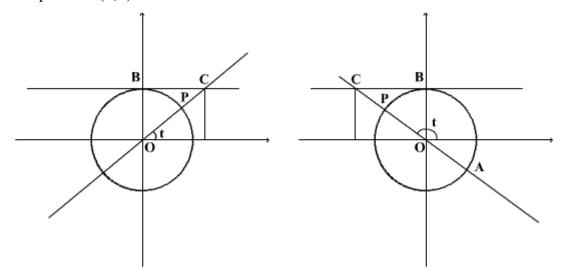


Figura 3

Definimos cotangente de t como sendo a medida algébrica do segmento BC, ou seja, a abscissa do ponto C no plano cartesiano.

Podemos observar que, para $t = k\pi$, $k \in Z$, P = E(t) = E(0) ou $P = E(t) = E(\pi)$. Neste caso, a reta OP coincide com a reta OA e é paralela à tangente a S^1 em B. Logo, não existe o ponto de interseção C e, portanto, a cotangente não está definida.

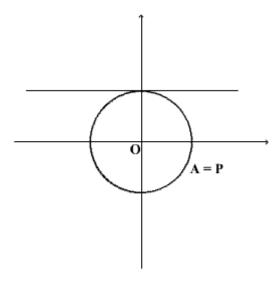


Figura 4

Função Cotangente

A função cotangente é a função $\,f\,$ real de variável real, que associa a cada $\,t\in R,$ $\,t\neq k\pi,\,k\in Z,\,$ o número $\,f(t)=\cot g\,t$:

$$f: \{ t \in R; t \neq k\pi, k \in Z \} \longrightarrow R$$

$$t \mid \xrightarrow{} f(t) = cotg t$$

Propriedades da função cotangente

As seguintes propriedades podem ser verificadas facilmente a partir da definição e da análise no círculo $\,S^1.\,$

1. Imagem

• A imagem da função cotangente é R.

2. Sinal da função

- $\cot t > 0$, se t pertence ao 1° ou 3° quadrantes.
- $\cot t < 0$, se t pertence ao 2° ou 4° quadrantes.

3. Crescimento e decrescimento

• A função cotangente é decrescente em todos os intervalos do tipo ($k\pi$, $k\pi$ + π), k \in Z.

4. Paridade

A função cotangente é impar: cotg(-t) = -cotg t.

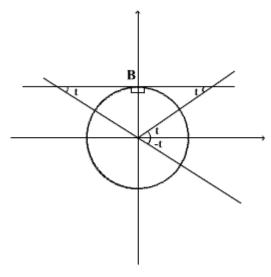


Figura 5

5. Periodicidade

• A função cotangente é periódica de período π : cotg (t+ π) = cotg t.

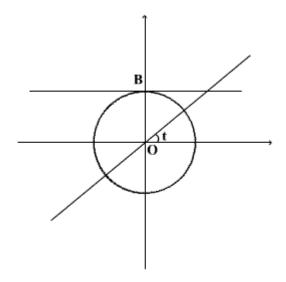


Figura 6

Gráfico

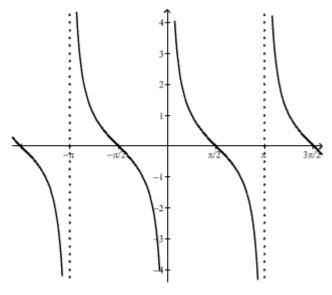


Figura 7

As retas $t=k\pi,\ k\in Z,\$ são chamadas assíntotas verticais do gráfico da função cotangente.

Mostraremos agora que a definição dada para cotangente é igual a $\cot t = \frac{\cos t}{\sin t}$, para $t \neq k\pi$, $k \in Z$. De fato, se $t = \frac{\pi}{2} + k\pi$, temos $\cot t = 0 = \frac{\cos t}{\sin t}$. Se $t \neq k\frac{\pi}{2}$, então P = E(t) é diferente de A, B, A' e B' (Figuras 2) e, portanto, temos os triângulos OPP_2 e OCB (Figuras 8), que são semelhantes.

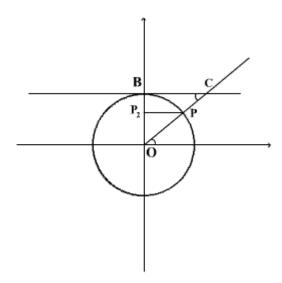


Figura 8

Usando a razão de semelhança, segue que $\frac{|BC|}{|OB|} = \frac{|PP_2|}{|OP_2|}$, ou seja, $\frac{|\cot g \ t|}{1} = \frac{|\cos t|}{|\sin t|}$.

Analisando os sinais de $\cot t$ e de $\frac{\cos t}{\sin t}$ nos quatro quadrantes, concluímos que

$$\cot g \ t = \frac{\cos \ t}{\text{sen} \ t}, \ \forall \ t \neq k\pi, \, k \in Z.$$

SECANTE

Dado $t \in R$, $t \neq \frac{\pi}{2} + k\pi$, $k \in Z$, seja P = E(t). Consideremos a reta tangente a S^1 em P e seja S a sua interseção com a reta OA.

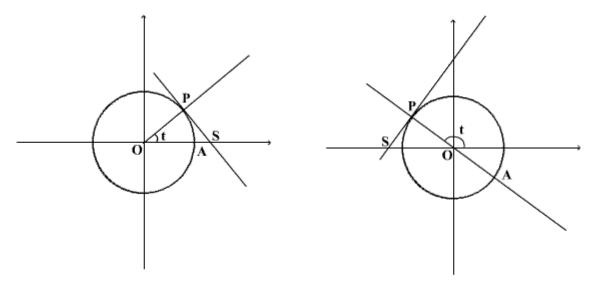


Figura 9

Definimos secante de t como sendo a medida algébrica do segmento OS, ou seja, a abscissa do ponto S no plano cartesiano.

Podemos observar que, para $t=\frac{\pi}{2}+k\pi$, $k\in Z$, a reta tangente a S^1 em P é paralela à reta OA e, portanto, não existe interseção e a secante não está definida.

Função Secante

A função secante é a função $\,f\,$ real de variável real, que associa a cada $\,t\in R,$ $t\neq \frac{\pi}{2}+k\pi\,,\,k\in Z,\,k\in Z,\,$ o número $\,f(t)=\sec\,t$:

f:
$$\{ t \in \mathbb{R}; t \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \} \longrightarrow \mathbb{R}$$

$$t \qquad | \longrightarrow f(t) = \sec t$$

Propriedades da função secante

1. Imagem

• A imagem da função secante é $\{y \in R; y \le -1 \text{ ou } y \ge 1\} = (-\infty, -1] \cup [1, +\infty).$

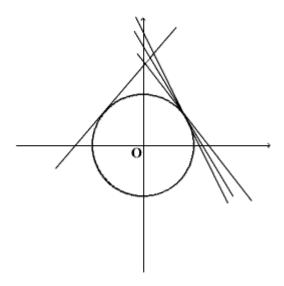


Figura 10

2. Sinal da função

- sec t > 0, se t pertence ao 1° ou 4° quadrantes.
- sec t < 0, se t pertence ao 2° e 3° quadrantes.

3. Crescimento e decrescimento

- A função secante é crescente em todos os intervalos dos tipos $[2k\pi, \frac{\pi}{2} + 2k\pi)$ ou $(\frac{\pi}{2} + 2k\pi, \pi + 2k\pi], k \in \mathbb{Z}.$
- A função secante é decrescente em todos os intervalos dos tipos [$\pi + 2k\pi$, $\frac{3\pi}{2} + 2k\pi$) ou $(\frac{3\pi}{2} + 2k\pi, 2\pi + 2k\pi]$, $k \in \mathbb{Z}$.

4. Paridade

• A função secante é par: sec (-t) = sec t.

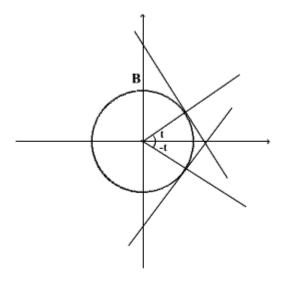


Figura 11

5. Periodicidade

• A função secante é periódica de periodo 2π : sec $(t+2\pi)$ = sec t.

Gráfico:

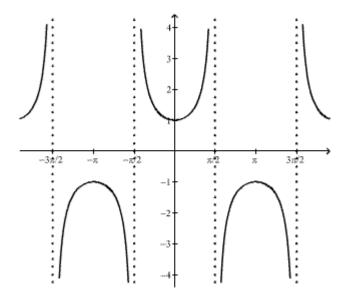


Figura 12

As retas $t = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$, são as assíntotas verticais do gráfico da função secante.

Considerando a definição dada para secante de $\,t$, podemos mostrar que $\,\sec t=\frac{1}{\cos t},\,\,$ para $\,t\neq\frac{\pi}{2}+2k\pi,\,k\in Z.\,\,$ De fato, se $\,t=k\pi,\,k\in Z,\,\,$ temos $\,P=E(t)=E(0)\,\,$ ou $\,P=E(t)=E(\pi).\,\,$ Logo, $\,\sec t=1=\frac{1}{\cos t}\,\,$ ou $\,\sec t=-1=\frac{1}{\cos t}\,\,$. Se $\,t\neq k\pi,\,\,t\neq\frac{\pi}{2}+k\pi,\,\,$ $\,k\in Z,\,\,$ então $\,P=E(t)\,\,$ é diferente de $\,A,\,B,\,A'\,\,$ e $\,B'\,\,$ e, portanto, temos os triângulos retângulos semelhantes OPS e $\,$ OPP $_1$ (Figuras 13).

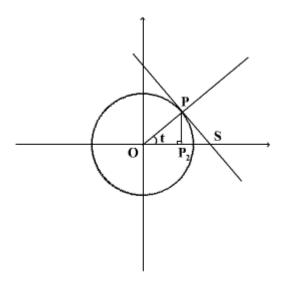


Figura 13

Daí,
$$\frac{|OS|}{|OP|} = \frac{|OP|}{|OP_1|}$$
, ou seja, $\frac{|\sec t|}{1} = \frac{1}{|\cos t|}$.

Analisando os sinais de sec t e de cos t, nos quatro quadrantes, concluímos que

$$sec t = \frac{1}{\cos t}, para t \neq \frac{\pi}{2} + 2k\pi, k \in Z.$$

COSSECANTE

Dado $t \in R$, $t \neq k\pi$, $k \in Z$, seja P = E(t). Consideremos a reta tangente a S^1 no ponto P e seja C a sua interseção com a reta OB.

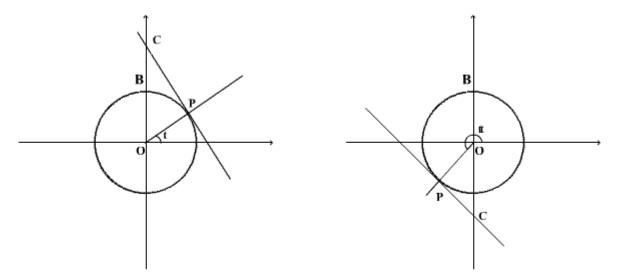


Figura 14

Definimos cossecante de t como sendo a medida algébrica do segmento OC, ou seja, a ordenada do ponto C no plano cartesiano.

Podemos observar que, para $t = k\pi$, $k \in Z$, P = E(t) = E(0) ou $P = E(t) = E(\pi)$ e a reta tangente a S^1 em P é paralela à reta OB. Logo, não existe o ponto de interseção C e, portanto, a cossecante não está definida.

Considerando a definição dada para cossecante de t, podemos mostrar que cossec $t=\frac{1}{\text{sen }t}$, para $t\neq k\pi,\,k\in Z$. De fato, se $t=\frac{\pi}{2}+k\pi$, temos $P=E(t)=E(\frac{\pi}{2})$ ou $P=E(t)=E(\frac{3\pi}{2})$; logo cossec $t=1=\frac{1}{\text{sen }t}$ ou cossec $t=-1=\frac{1}{\text{sen }t}$. Se $t\neq \infty$

 $k\frac{\pi}{2}$, então P é diferente de A, B, A' e B' e, portanto, temos os triângulos retângulos OCP e O P_2P (Figuras 15), que são semelhantes.

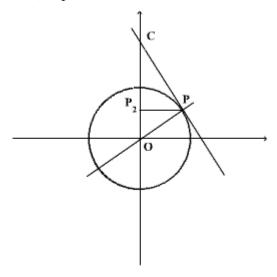


Figura 15

Usando a razão de semelhança, segue que $\frac{|OC|}{|OP|} = \frac{|PO|}{|OP_2|}$, ou seja, $\frac{|\cos\sec t|}{1} = \frac{1}{|\sec t|}$.

Analisando os sinais de cossec t e de sen t nos quatro quadrantes, concluímos que $cossec \ t = \frac{1}{sen \ t}, \ \forall \ t \neq k\pi, k \in Z.$